

Control of pathogenic Escherichia coli O157:H7 in contaminated grass silage with a dual-purpose silage inoculant

G. Copani¹, N. Milora¹, A. Segura¹, K. Witt¹, G. Ghilardelli², S. Sigolo², A. Gallo²

¹ Chr-Hansen, 2970 Hørsholm, Denmark, Email: dkgico@chr-hansen.com ² Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy

Keywords: Silage, lactic acid bacteria, aerobic stability, Enterobacteriaceae, E. coli O157:H7

INTRODUCTION

Poor management of the silage-making process results in leftover air inside the forage mass. Residual oxygen or air penetration into the bunker during the feed-out phase promote the development of yeast and mold as well as pathogenic microorganisms such as Escherichia coli O157:H7 (Queiroz et al. 2018). Spoiled and contaminated silages lead to less nutritive value forage, cause diseases in ruminants, and constitute a vehicle of transmission of pathogens on the farm. Silage inoculants are known for their positive effects improving fermentation and curtailing the growth of pathogens such as E. coli O157:H7 (Ogunade et al. 2016; Pedroso et al. 2010).

"

The objectives of this study were to evaluate the effects of a dual strain silage inoculant on fermentation parameters, aerobic stability (AS) and its ability to control the growth of Enterobacteriaceae including E. coli O157:H7 in grass silage during the fermentation phase and after AS.

MATERIAL AND METHODS

Lactococcus lactis DSM11037 applied at 150,000 cfu/g of forage E. coli O157:H7 (EC) DSM17076 applied

77

 Fermentation parameters analysis: pH, acetate and lactate quantification Microorganism enumeration Total count of lactic acid bacteria (LAB), yeast, mold, Bacillus spores and Enterobacteriaceae Aerobic stability test for 7 days at room temperature

Data were analyzed in agreement to a completely randomized design with a 2 x 2 factorial arrangement of treatments. The tested main effects were use of SILOSOLVE® FC (i.e., inoculant), challenge with EC (i.e., challenge) and their first order interaction. Significance was declared for a P<0.05.

RESULTS AND DISCUSSION

The use of SILOSOLVE® FC resulted, after one week of fermentation, in (i) a greater aerobic stability (AS) (increase > 120 hours), (ii) a lower pH before and after AS, and (iii) an increase in lactate and acetate levels (Table 1). SILOSOLVE $^{\otimes}$ FC also significantly reduced the yeast population upon opening and both yeast and mold populations after AS (Figure 1). After fermentation, Bacillus were numerically lower in silages treated with SILOSOLVE® FC while after AS, significant differences were observed (Figure 1). Similarly to the study conducted by Ogunade et al. (2016), Enterobacteriaceae remained detectable in control mini-silos (C and EC) fermented for one week. However, the addition of SILOSOLVE® FC inhibited the growth of Enterobacteriaceae during ensiling and after AS (Figure 1).

Items	Treatments					P-value	P-value	P-value
		FC		EC+FC		Inoculant	Challenge	Inoculant* Challenge
AS (hours)	34.33	159.00	35.33	159.00	3.95	< 0.0001	0.9025	0.9025
pН	4.63	4.05	4.63	4.11	0.05	< 0.0001	0.5226	0.6073
pH post-AS	6.39	3.99	6.31	4.05	0.09	< 0.0001	0.9044	0.4485
DM (%)	32.52ª	32.18ª	28.12 ^b	31.95°	0.57	0.0158	0.0036	0.0065
Acetate (% DM)	0.87	3.04	1.07	2.38	0.22	< 0.0001	0.3239	0.0839
Lactate (% DM)	1.42	3.27	1.87	3.53	0.37	0.0015	0.3688	0.8023

Figure 1. Microorganism enumeration in grass inoculated without additive or with SILOSOLVE* FC after one week of fermentation and after aerobic stability. **P<0.01; ***P<0.001; ****P<0.0001

CONCLUSION

"

The present study showed the efficacy of SILOSOLVE® FC in grass silages to increase aerobic stability and control the growth of yeast, mold, Bacillus and Enterobacteriaceae during ensiling and after AS, following a short period of fermentation. Furthermore, SILOSOLVE® FC could be used as a natural microbial solution in silage making process to control and reduce pathogenic E. coli O157:H7 during fermentation and at the feed-out stage.

Ogunade. I. M., D. H. Kim, Y. Jiang, Z. G. Weinberg, K. C. Jeong, and A. T. Adesogan. 2016. Control of Escherichia Coli 0157:H7 in Contaminated Alfalfa Silage: Effects of Silage Additives. J. Dairy Sci. 99(6):4427-36. * Pedroso, A. F., A. T. Adesogan, O. C. M. Queiroz, and S. K. Williams, 2010. Control of Escherichia Coli 0157:H7 in Corn Silage with or without Various Inoculants: Efficacy and Mode of Action. J. Dairy Sci. 93(3):1098-1104. • Queiroz. O. C. M., I. M. Ogunade. Z. Weinberg. and A. T. Adesogan. 2018. Silage Review: Foodborne Pathogens in Silage and Their Mitigation by Silage Additives. J. Dairy Sci. 101(5):4132-42.

Nov 1 Ð